# A Vapor Pressure Model Including Group-Group Interactions: Impact on Secondary Organic Aerosol Yield

S. Compernolle K. Ceulemans J.-F. Müller



Belgian Institute of Space Aeronomy

Atmospheric Chemical Mechanisms, 10-12 December 2008, UCDavis 2008



#### Introduction: Boream model

- Biogenic Oxidation and RElated Aerosol formation Model
- Chemical mechanism to describe oxidation of  $\alpha$ -pinene, coupled to an gas-to-particle partitioning module
- About 5000-10000 reactions and > 1000 chemical species (depending on the version)
- Validation by comparing to smog chamber experiments
- Capouet et al., J. Geophys. Res. 113, D02308 (2008)

- The partitioning module in BOREAM
  - Description
  - Vapor pressure: old formulation
- Improvements of the partitioning module
  - Vapor pressure model improvements

Outlook

- The partitioning module in BOREAM
  - Description
  - Vapor pressure: old formulation
- Improvements of the partitioning module
  - Vapor pressure model improvements

# Equilibrium limit: Pankow's formula

- Gas-to-particle partitioning is described kinetically.
- In the equilibrium limit, the following partitioning formula applies.  $K_{p,i}$  =partitioning coefficient.

$$\begin{split} \frac{[A_i(p)]}{[A_i(g)]} &= \frac{k_{on}}{k_{off}} [OA] = \frac{RT}{p_i^0 \zeta_i N_{Avo}} [OA] \\ &= \frac{RT}{\overline{M}_{om} p_i^0 \zeta_i N_{Avo}} [M_{OA}] = K_{p,i} [M_{OA}] \end{split}$$

- This limit is reached in most simulations of smog chamber experiments.
- Higher [OA] leads to more condensation.
- Parameterizations have to be made for vapor pressure  $p_i^0$  and activity coefficient  $\zeta_i$ .
- Activity coefficient is calculated with a version of UNIFAC

Outlook

- The partitioning module in BOREAM
  - Description
  - Vapor pressure: old formulation
- 2 Improvements of the partitioning module
  - Vapor pressure model improvements

# Vapor pressure: current formulation.

• Vapor pressure formula (Capouet et al. ACP (2006)):

$$\log_{10} p_i^0 = \log_{10} p_{i,hc}^0 + \sum_k v_{i,k} \tau_k$$

- $p_{i,hc}^0$ : vapor pressure of the parent hydrocarbon: replace all the hetero-atoms by the appropriate amount of hydrogens.
- $\tau_k = A + B \times (T 298K)$ : contribution of functional groups

#### Group parameterizations

| A       | В      |                      | A       | В      |
|---------|--------|----------------------|---------|--------|
| -0.8937 | 0.0039 |                      | -3.2516 | 0.0075 |
| -2.0897 | 0.0063 |                      | -2.6738 | 0.0171 |
| -1.6711 | 0.0063 |                      | -2.0374 | 0.0124 |
| -1.2793 | 0.0063 |                      | -1.4418 | 0.0103 |
| -2.9942 | 0.0361 | $	au_{\mathrm{PAN}}$ | -3.0372 | 0.0133 |

## Vapor pressure: current formulation.

Vapor pressure formula (Capouet et al. ACP (2006)):

$$\log_{10} p_i^0 = \log_{10} p_{i,hc}^0 + \sum_k v_{i,k} \tau_k$$

- $p_{i,hc}^0$ : vapor pressure of the parent hydrocarbon: replace all the hetero-atoms by the appropriate amount of hydrogens.
- $\tau_k = A + B \times (T 298K)$ : contribution of functional groups

#### Group parameterizations

|                      | Α       | В      |                       | Α       | В      |
|----------------------|---------|--------|-----------------------|---------|--------|
| $	au_{carb}$         | -0.8937 | 0.0039 | $	au_{\mathrm{COOH}}$ | -3.2516 | 0.0075 |
| $	au_{ m ONO2p}$     | -2.0897 | 0.0063 | $	au_{\mathrm{OHp}}$  | -2.6738 | 0.0171 |
| $	au_{ m ONO2s}$     | -1.6711 | 0.0063 | $	au_{ m OHs}$        | -2.0374 | 0.0124 |
| $	au_{ m ONO2t}$     | -1.2793 | 0.0063 | $	au_{ m OHt}$        | -1.4418 | 0.0103 |
| $	au_{\mathrm{OOH}}$ | -2.9942 | 0.0361 | $	au_{\mathrm{PAN}}$  | -3.0372 | 0.0133 |

# Shortcomings vapor pressure model

- No group-group interactions, both inter- and intramolecular.
- No carbon skeleton structural effects
- Parameters should be updated with newly available vapor pressure data.

- The partitioning module in BOREAM
  - Description
  - Vapor pressure: old formulation
- Improvements of the partitioning module
  - Vapor pressure model improvements

## Improvements in vapor pressure model

- More data included: about 460 molecules
  - Direct vapor pressure data where possible. Mono- and bifunctional compounds.
  - When necessary: estimation from experimental boiling point. (Moller et al., J. Mol. Liq. 2008).
  - Gas chromatography data: useful for relative trends within one class of molecules.
- Model includes:
  - Functional groups: -C(=O)-, -COOH, -OH, ...
  - ② Carbon skeleton effects: -CH(CH<sub>3</sub>)COOH vs. -CH<sub>2</sub>COOH,...
  - Neighbour (intramolecular) group-group interactions: -C(=O)COOH, -C(=O)C(=O)-,...
  - Long range (intermolecular) group-group interactions: HOCH<sub>2</sub>...CH<sub>2</sub>OH, HOCH<sub>2</sub>...CH<sub>2</sub>COOH,...

# Functional groups: -C(=O)OX

 These lower the vapor pressure by about three orders of magnitude.

|                               | $\tau$ (298 $K$ ) |
|-------------------------------|-------------------|
| -C(=O)OH                      | -3.45             |
| -C(=O)OOH                     | -2.85             |
| -C(=O)OONO <sub>2</sub> (PAN) | -3.04             |

## Functional groups: effect of placement

 For ring or chain, a functional group lowers the vapor pressure more in the order primary -CH<sub>2</sub>OH> secondary

 A functional group in a ring lowers the vapor pressure more than in a chain

|                  | р               | sc    | S      | tc     | t     |
|------------------|-----------------|-------|--------|--------|-------|
| ОН               | -2.27           | -2.09 | -1.68  | -1.65  | -1.35 |
| ONO <sub>2</sub> | -2.33           | -2.24 | -1.89  | -2.01* | -1.85 |
| ООН              | -3.15           | -3.65 | -2.85* | -3.43* | -2.69 |
| C=O              | -1.2 (aldehyde) | -1.36 | -1.1   | Х      | Х     |

<sup>\*</sup>Estimated by analogy with other groups.

#### Carbon skeleton effects

A carbon on the 2-position increases the vapor pressure.

- This effect is much more important in a ring than in a chain.
- A double bond in combination with a carbonyl or acid lowers the vapor pressure.

| chain                             |       | ring      |                         | alkene |       |
|-----------------------------------|-------|-----------|-------------------------|--------|-------|
| C next to                         |       | C next to |                         | with   |       |
| -CH <sub>2</sub> OH               | +0.07 | OHsc      | +0.57                   | C=O    | -0.31 |
| -CH <sub>2</sub> ONO <sub>2</sub> | +0.14 | C=O       | +0.3 (CH <sub>3</sub> ) | COOH   | -0.10 |
| C=O                               | +0.08 |           | +0.5 (C <sub>2</sub> )  |        |       |
| -COOH                             | +0.25 |           |                         |        |       |

 Similar parameters for C(=0)OOH, OOH, etc. can be estimated by analogy.

# Neighbouring functional groups (intramolecular interaction)

- Compared to similar molecules with non-neighbouring groups, the vapor pressure is increased.
- Effect in a ring is in general stronger than in a chain.
- Important for carbonyl in conjugation with carbonyl or acid

| chain               |       | ring                |       |  |  |
|---------------------|-------|---------------------|-------|--|--|
|                     |       |                     |       |  |  |
| OH,OH               | +0.33 | OH,OH               | +0.94 |  |  |
| C=O,C=O             | +0.90 | C=O,C=O             | +0.47 |  |  |
| $ONO_2,ONO_2$       | +0.21 | $ONO_2,ONO_2$       | +0.44 |  |  |
| OH,ONO <sub>2</sub> | +0.02 | OH,ONO <sub>2</sub> | +0.28 |  |  |
| OH,C=O              | +0.22 |                     |       |  |  |
| C=O,COOH*           | +1.82 |                     |       |  |  |
| OH,COOH*            | +1.98 |                     |       |  |  |

<sup>\*</sup> Based on limited and/or scattered data.

## Long range (intermolecular) interaction

 Especially important between groups that do hydrogen-bonding. These interactions lower the vapor pressure.

|      | OH    | CO   | COOH   |
|------|-------|------|--------|
| ОН   | -0.83 | 0.*  | -1.59* |
| CO   |       | 0.08 | -1.0*  |
| COOH |       |      | -1.25* |

<sup>\*</sup> Based on limited and/or scattered data

## Summary

- Vapor pressure model can be improved by including interactions between groups.
  - This lowers the vapor pressure especially for molecules with several hydrogen-bonding groups
- For several interaction terms, there is a lack of data and their contributions have to be estimated or neglected. More experimental data would be greatly appreciated!

#### Outlook

- With the (limited) data available on molecules with more than 2 functional groups, look what is the best method for 'counting' group-group interactions.
- Maybe devise an activity coefficient method based on similar principles, to have a more unified approach.